English

Prove that: cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A - Mathematics

Advertisements
Advertisements

Question

Prove that:

cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A

Sum

Solution

L.H.S. = cos A (1 + cot A) + sin A (1 + tan A)

= `cosA(1 + cosA/sinA) + sinA(1 + sinA/cosA)`

= `(cosA(sinA + cosA))/sinA + (sinA(cosA + sinA))/cosA`

= `(sinA + cosA)[cosA/sinA + sinA/cosA]`

= `(sinA + cosA)[(cos^2A + sin^2A)/(sinAcosA)]`

= `(sinA + cosA) xx 1/(sinAcosA)`

= `(sinA + cosA)/(sinAcosA)`  ...[∵ cos2θ + sin2θ = 1]

= `sinA/(sinAcosA) + cosA/(sinAcosA)`

= `1/cosA + 1/sinA`

= sec A + cosec A = R.H.S.

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Trigonometrical Identities - Exercise 21 (E) [Page 333]

APPEARS IN

Selina Mathematics [English] Class 10 ICSE
Chapter 21 Trigonometrical Identities
Exercise 21 (E) | Q 10.04 | Page 333
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×