Advertisements
Advertisements
Question
Prove that:
cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A
Solution
L.H.S. = cos A (1 + cot A) + sin A (1 + tan A)
= `cosA(1 + cosA/sinA) + sinA(1 + sinA/cosA)`
= `(cosA(sinA + cosA))/sinA + (sinA(cosA + sinA))/cosA`
= `(sinA + cosA)[cosA/sinA + sinA/cosA]`
= `(sinA + cosA)[(cos^2A + sin^2A)/(sinAcosA)]`
= `(sinA + cosA) xx 1/(sinAcosA)`
= `(sinA + cosA)/(sinAcosA)` ...[∵ cos2θ + sin2θ = 1]
= `sinA/(sinAcosA) + cosA/(sinAcosA)`
= `1/cosA + 1/sinA`
= sec A + cosec A = R.H.S.
APPEARS IN
RELATED QUESTIONS
If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,
Express the ratios cos A, tan A and sec A in terms of sin A.
Prove the following trigonometric identities.
`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
If `sec theta + tan theta = p,` prove that
(i)`sec theta = 1/2 ( p+1/p) (ii) tan theta = 1/2 ( p- 1/p) (iii) sin theta = (p^2 -1)/(p^2+1)`
Write the value of sin A cos (90° − A) + cos A sin (90° − A).
If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
Choose the correct alternative:
sin θ = `1/2`, then θ = ?
If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.