Advertisements
Advertisements
Question
If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.
Solution
Given:
`cosec^2θ (1+cosθ)(1-cosθ)=λ`
⇒ `cosec^2θ (1+cosθ)(1-cosθ)=λ`
⇒ `cosec^2θ(1-cos^2θ)=λ`
⇒`cosec^θ sin^2θ=λ`
⇒`1/sin^2θxx sin^2θ=λ`
⇒` 1=λ`
⇒`λ=1`
Thus, the value of λ is 1.
APPEARS IN
RELATED QUESTIONS
Evaluate without using trigonometric tables:
`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`
Prove the following trigonometric identities
`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) = (1 + sin^2 theta)/(1 - sin^2 theta)`
Prove the following trigonometric identities.
sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`
Prove the following identities:
cosec A(1 + cos A) (cosec A – cot A) = 1
`(sec^2 theta -1)(cosec^2 theta - 1)=1`
`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`
`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`
`(tan A + tanB )/(cot A + cot B) = tan A tan B`
Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`.
What is the value of 9cot2 θ − 9cosec2 θ?
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
Prove the following identity :
sinθcotθ + sinθcosecθ = 1 + cosθ
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
Prove the following identity :
`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`
Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.
Choose the correct alternative:
Which is not correct formula?
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`
Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ