Advertisements
Advertisements
प्रश्न
If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.
उत्तर
Given:
`cosec^2θ (1+cosθ)(1-cosθ)=λ`
⇒ `cosec^2θ (1+cosθ)(1-cosθ)=λ`
⇒ `cosec^2θ(1-cos^2θ)=λ`
⇒`cosec^θ sin^2θ=λ`
⇒`1/sin^2θxx sin^2θ=λ`
⇒` 1=λ`
⇒`λ=1`
Thus, the value of λ is 1.
APPEARS IN
संबंधित प्रश्न
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2
Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`
Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Show that : `sinAcosA - (sinAcos(90^circ - A)cosA)/sec(90^circ - A) - (cosAsin(90^circ - A)sinA)/(cosec(90^circ - A)) = 0`
`cosec theta (1+costheta)(cosectheta - cot theta )=1`
cosec4θ − cosec2θ = cot4θ + cot2θ
Show that none of the following is an identity:
`sin^2 theta + sin theta =2`
Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
What is the value of \[\sin^2 \theta + \frac{1}{1 + \tan^2 \theta}\]
What is the value of 9cot2 θ − 9cosec2 θ?
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
9 sec2 A − 9 tan2 A is equal to
The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to
Prove the following identity :
`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ
Prove that
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`
If cosA + cos2A = 1, then sin2A + sin4A = 1.
Statement 1: sin2θ + cos2θ = 1
Statement 2: cosec2θ + cot2θ = 1
Which of the following is valid?