हिंदी

The Value of Sin ( 45 ∘ + θ ) − Cos ( 45 ∘ − θ ) is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to 

विकल्प

  • 2 cos \[\theta\]

  • 0  

  •   2 sin \[\theta\]

  • 1

MCQ

उत्तर

We know that, 

\[\sin\left( 90 - \theta \right) = \cos\theta\]

So, 

\[\sin\left( 45°+ \theta \right) = \cos\left[ 90 - \left( 45° + \theta \right) \right] = \cos\left( 45° - \theta \right)\] 

\[\therefore \sin\left( 45°+ \theta \right) - \cos\left( 45°- \theta \right)\]
\[ = \cos\left( 45° - \theta \right) - \cos\left( 45° - \theta \right)\]
\[ = 0\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.4 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.4 | Q 30 | पृष्ठ ५८

संबंधित प्रश्न

If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.


Prove the following trigonometric identities:

`(1 - cos^2 A) cosec^2 A = 1`


Prove the following trigonometric identities.

`tan theta + 1/tan theta = sec theta cosec theta`


Prove that  `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2` 


Prove the following identities:

cosec A(1 + cos A) (cosec A – cot A) = 1


`(1-cos^2theta) sec^2 theta = tan^2 theta`


`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta` 


`(cos  ec^theta + cot theta )/( cos ec theta - cot theta  ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta  cot theta`


If `sin theta = x , " write the value of cot "theta .`


Define an identity.


 Write True' or False' and justify your answer the following :

The value of the expression \[\sin {80}^° - \cos {80}^°\] 


Prove the following identity :

 ( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ) 


Prove the following identity : 

`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`


A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.


Prove that `(sin θ tan θ)/(1 - cos θ) = 1 + sec θ.`


If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.


Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.


Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ


Prove the following:

(sin α + cos α)(tan α + cot α) = sec α + cosec α


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×