Advertisements
Advertisements
प्रश्न
If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.
उत्तर १
(cosθ + sinθ)2 = (`sqrt2`. cosθ)2
cos2θ + sin2θ + 2.cosθ.sinθ = 2cos2θ
1 + 2.cosθ.sinθ = 2cos2θ
2.cosθ.sinθ = 2cos2θ − 1
(cosθ.sinθ)2 = cos2θ + sin2θ − 2.cosθ.sinθ
= 1 − (2.cos2θ − 1)
= 1 − 2.cos2θ +1
= 2 − 2.cos2θ
= 2(1 − cos2θ)
cosθ − sinθ = `sqrt(2sin^2θ)`
= `sqrt2`sinθ
Hence proved
उत्तर २
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`sin theta/(1 - cos theta) = cosec theta + cot theta`
Prove the following trigonometric identities.
`cos A/(1 - tan A) + sin A/(1 - cot A) = sin A + cos A`
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`
If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
If x = a sin θ and y = b cos θ, what is the value of b2x2 + a2y2?
Prove the following identity :
(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.