Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
उत्तर
We have to prove `(cot A + tan B)/(cot B + tan A) = cot A tan B`
Now
`(cot A + tan B)/(cot B + tan A) = (cot A + 1/cot B)/(cot B + 1/cot A)`
`= ((cot A cot B + 1)/cot B)/((cot A cot B +1)/cot A)`
`= cot A/cot B`
`= cot A 1/cot B`
= cot A tan B
Hence proved
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`
Prove the following trigonometric identities.
sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B
Prove the following identities:
`(secA - tanA)/(secA + tanA) = 1 - 2secAtanA + 2tan^2A`
Prove the following identities:
`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`
Prove that
`cot^2A-cot^2B=(cos^2A-cos^2B)/(sin^2Asin^2B)=cosec^2A-cosec^2B`
If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2.
The value of sin2 29° + sin2 61° is
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
Prove the following identity :
`1/(tanA + cotA) = sinAcosA`
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
Prove the following identity :
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`
Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ
Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`
If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.
If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4
If cosA + cos2A = 1, then sin2A + sin4A = 1.