Advertisements
Advertisements
प्रश्न
Prove the following identities:
`(secA - tanA)/(secA + tanA) = 1 - 2secAtanA + 2tan^2A`
उत्तर
L.H.S. = `(secA - tanA)/(secA + tanA)`
= `(secA - tanA)/(secA + tanA) xx (secA - tanA)/(secA - tanA)`
= `(secA - tanA)^2/(sec^2A - tan^2A)`
= `(sec^2A + tan^2A - 2secAtanA)/1`
= 1 + tan2 A + tan2 A – 2 sec A tan A
= 1 – 2 sec A tan A + 2 tan2 A = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following trigonometric identities.
(sec2 θ − 1) (cosec2 θ − 1) = 1
Prove the following trigonometric identities.
(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A
Prove the following trigonometric identities.
`(tan A + tan B)/(cot A + cot B) = tan A tan B`
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
Prove the following identities:
`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`
` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`
If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`
Prove the following Identities :
`(cosecA)/(cotA+tanA)=cosA`
Prove the following identity :
`sqrt(cosec^2q - 1) = "cosq cosecq"`