हिंदी

Prove the Following Trigonometric Identities. (Tan a + Tan B)/(Cot a + Cot B) = Tan a Tan B - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`(tan A + tan B)/(cot A + cot B) = tan A tan B`

उत्तर

 We have to prove `(tan A + tan B)/(cot A + cot B) = tan A tan B`

Now

`(tan A + tan B)/(cot A + cot B) = (tan A + tan B)/(1/tan A + 1/tanB)`

`= (tan A + tan B)/((tan B + tan A)/(tan A tan B))`

= tan A tan B

Hence proved.

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 71 | पृष्ठ ४६

संबंधित प्रश्न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`


if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`


Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`


Prove the following trigonometric identities.

`tan A/(1 + tan^2  A)^2 + cot A/((1 + cot^2 A)) = sin A  cos A`


Prove the following trigonometric identities.

tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B


Prove the following identities:

`(1 + sin A)/(1 - sin A) = (cosec  A + 1)/(cosec  A - 1)`


Prove the following identities:

cosecA – cosec2 A = cot4 A + cot2 A


`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`


If \[sec\theta + tan\theta = x\] then \[tan\theta =\] 


Prove the following identity : 

`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq


If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m


Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tanθ + cotθ. 


Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.


Prove the following identities:

`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.


Prove the following identities.

(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2


If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ

Activity:

`square` = 1 + tan2θ    ......[Fundamental trigonometric identity]

`square` – tan2θ = 1

(sec θ + tan θ) . (sec θ – tan θ) = `square`

`sqrt(3)*(sectheta - tan theta)` = 1

(sec θ – tan θ) = `square`


Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`


If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`


If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.


If tan θ = `x/y`, then cos θ is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×