Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(tan A + tan B)/(cot A + cot B) = tan A tan B`
उत्तर
We have to prove `(tan A + tan B)/(cot A + cot B) = tan A tan B`
Now
`(tan A + tan B)/(cot A + cot B) = (tan A + tan B)/(1/tan A + 1/tanB)`
`= (tan A + tan B)/((tan B + tan A)/(tan A tan B))`
= tan A tan B
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
Prove the following trigonometric identities.
`tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
Prove the following trigonometric identities.
tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B
Prove the following identities:
`(1 + sin A)/(1 - sin A) = (cosec A + 1)/(cosec A - 1)`
Prove the following identities:
cosec4 A – cosec2 A = cot4 A + cot2 A
`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`
If \[sec\theta + tan\theta = x\] then \[tan\theta =\]
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m
Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tan2 θ + cot2 θ.
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
Prove the following identities:
`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.
Prove the following identities.
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ
Activity:
`square` = 1 + tan2θ ......[Fundamental trigonometric identity]
`square` – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = `square`
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `square`
Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`
If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`
If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.
If tan θ = `x/y`, then cos θ is equal to ______.