Advertisements
Advertisements
प्रश्न
If tan θ = `x/y`, then cos θ is equal to ______.
विकल्प
`x/sqrt(x^2 + y^2)`
`y/sqrt(x^2 + y^2)`
`x/sqrt(x^2 - y^2)`
`y/sqrt(x^2 - y^2)`
उत्तर
If tan θ = `x/y`, then cos θ is equal to `underlinebb(y/sqrt(x^2 + y^2))`.
Explanation:
Given, tan θ = `x/y` ...(i)
We know that
tan θ = `"Perpendicular (P)"/"Base (B)"` ...(ii)
By comparing equations (i) and (ii), we get
P = x, B = y
H2 = P2 + B2 ...(Pythagoras theorem)
H2 = x2 + y2
H = `sqrt(x^2 + y^2)`
Then cos θ = `B/H`
= `y/sqrt(x^2 + y^2)`
APPEARS IN
संबंधित प्रश्न
Evaluate sin25° cos65° + cos25° sin65°
Prove the following trigonometric identities.
`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`
Prove the following identities:
(sec A – cos A) (sec A + cos A) = sin2 A + tan2 A
Prove the following identities:
`(sinAtanA)/(1 - cosA) = 1 + secA`
`(sec^2 theta-1) cot ^2 theta=1`
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
`(cos ec^theta + cot theta )/( cos ec theta - cot theta ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta cot theta`
`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`
`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`
If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`
If `secθ = 25/7 ` then find tanθ.
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
Simplify
sin A `[[sinA -cosA],["cos A" " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
Prove the following identity :
`1/(tanA + cotA) = sinAcosA`
Prove the following identity :
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Without using trigonometric identity , show that :
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
Choose the correct alternative:
1 + tan2 θ = ?
Choose the correct alternative:
sec 60° = ?
Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.
Activity:
L.H.S = `square`
= `cos^2theta xx square .....[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= R.H.S