Advertisements
Advertisements
प्रश्न
If tan θ = `x/y`, then cos θ is equal to ______.
पर्याय
`x/sqrt(x^2 + y^2)`
`y/sqrt(x^2 + y^2)`
`x/sqrt(x^2 - y^2)`
`y/sqrt(x^2 - y^2)`
उत्तर
If tan θ = `x/y`, then cos θ is equal to `underlinebb(y/sqrt(x^2 + y^2))`.
Explanation:
Given, tan θ = `x/y` ...(i)
We know that
tan θ = `"Perpendicular (P)"/"Base (B)"` ...(ii)
By comparing equations (i) and (ii), we get
P = x, B = y
H2 = P2 + B2 ...(Pythagoras theorem)
H2 = x2 + y2
H = `sqrt(x^2 + y^2)`
Then cos θ = `B/H`
= `y/sqrt(x^2 + y^2)`
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) (sinθ + cosecθ)^2 + (cosθ + secθ)^2 = 7 + tan^2 θ + cot^2 θ`
`(ii) (sinθ + secθ)^2 + (cosθ + cosecθ)^2 = (1 + secθ cosecθ)^2`
`(iii) sec^4 θ– sec^2 θ = tan^4 θ + tan^2 θ`
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Prove the following trigonometric identities.
`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
Prove the following trigonometric identities.
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
`cot^2 theta - 1/(sin^2 theta ) = -1`a
If tan A =` 5/12` , find the value of (sin A+ cos A) sec A.
If `sec theta = x ,"write the value of tan" theta`.
If cosec θ = 2x and \[5\left( x^2 - \frac{1}{x^2} \right)\] \[2\left( x^2 - \frac{1}{x^2} \right)\]
Write True' or False' and justify your answer the following :
The value of sin θ+cos θ is always greater than 1 .
9 sec2 A − 9 tan2 A is equal to
Prove the following identity :
`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`
prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`
Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ) + cos2 θ.
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
Prove the following identities.
`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`
Prove that sec2θ + cosec2θ = sec2θ × cosec2θ
Prove that `(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ
Prove that sin4A – cos4A = 1 – 2cos2A