मराठी

If tan θ = xy, then cos θ is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If tan θ = `x/y`, then cos θ is equal to ______.

पर्याय

  • `x/sqrt(x^2 + y^2)`

  • `y/sqrt(x^2 + y^2)`

  • `x/sqrt(x^2 - y^2)`

  • `y/sqrt(x^2 - y^2)`

MCQ
रिकाम्या जागा भरा

उत्तर

If tan θ = `x/y`, then cos θ is equal to `underlinebb(y/sqrt(x^2 + y^2))`.

Explanation:

Given, tan θ = `x/y`   ...(i)

We know that

tan θ = `"Perpendicular (P)"/"Base (B)"`  ...(ii)

By comparing equations (i) and (ii), we get

P = x, B = y

H2 = P2 + B2   ...(Pythagoras theorem)

H2 = x2 + y2 

H = `sqrt(x^2 + y^2)`

Then cos θ = `B/H`

= `y/sqrt(x^2 + y^2)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2022-2023 (March) Standard - Outside Delhi Set 3

संबंधित प्रश्‍न

Prove the following identities:

`(i) (sinθ + cosecθ)^2 + (cosθ + secθ)^2 = 7 + tan^2 θ + cot^2 θ`

`(ii) (sinθ + secθ)^2 + (cosθ + cosecθ)^2 = (1 + secθ cosecθ)^2`

`(iii) sec^4 θ– sec^2 θ = tan^4 θ + tan^2 θ`


Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`


Prove the following trigonometric identities.

`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`


Prove the following trigonometric identities.

`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`


Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`


Prove that:

`sqrt(sec^2A + cosec^2A) = tanA + cotA`


`cot^2 theta - 1/(sin^2 theta ) = -1`a


If tan A =` 5/12` ,  find the value of (sin A+ cos A) sec A.


If `sec theta = x ,"write the value of tan"  theta`.


If cosec θ = 2x and \[5\left( x^2 - \frac{1}{x^2} \right)\] \[2\left( x^2 - \frac{1}{x^2} \right)\] 


 Write True' or False' and justify your answer  the following : 

The value of sin θ+cos θ is always greater than 1 .


9 sec2 A − 9 tan2 A is equal to


Prove the following identity : 

`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`


prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`


Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ)  +  cos2 θ.


Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.


Prove the following identities.

`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec"  theta - 1)/("cosec"  theta + 1)`


Prove that sec2θ + cosec2θ = sec2θ × cosec2θ


Prove that `(sintheta + "cosec"  theta)/sin theta` = 2 + cot2θ


Prove that sin4A – cos4A = 1 – 2cos2A


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×