Advertisements
Advertisements
Question
If tan θ = `x/y`, then cos θ is equal to ______.
Options
`x/sqrt(x^2 + y^2)`
`y/sqrt(x^2 + y^2)`
`x/sqrt(x^2 - y^2)`
`y/sqrt(x^2 - y^2)`
Solution
If tan θ = `x/y`, then cos θ is equal to `underlinebb(y/sqrt(x^2 + y^2))`.
Explanation:
Given, tan θ = `x/y` ...(i)
We know that
tan θ = `"Perpendicular (P)"/"Base (B)"` ...(ii)
By comparing equations (i) and (ii), we get
P = x, B = y
H2 = P2 + B2 ...(Pythagoras theorem)
H2 = x2 + y2
H = `sqrt(x^2 + y^2)`
Then cos θ = `B/H`
= `y/sqrt(x^2 + y^2)`
APPEARS IN
RELATED QUESTIONS
Express the ratios cos A, tan A and sec A in terms of sin A.
Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`
Prove the following trigonometric identities.
`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`
Prove the following trigonometric identities.
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`
Write the value of `3 cot^2 theta - 3 cosec^2 theta.`
If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`
If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ?
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]
Prove the following identity :
`(1 - sin^2θ)sec^2θ = 1`
Prove the following identity :
cosecθ(1 + cosθ)(cosecθ - cotθ) = 1
Prove the following identity :
`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`
Without using trigonometric identity , show that :
`cos^2 25^circ + cos^2 65^circ = 1`
If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.
Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
If sin θ + cos θ = `sqrt(3)`, then show that tan θ + cot θ = 1
Let α, β be such that π < α – β < 3π. If sin α + sin β = `-21/65` and cos α + cos β = `-27/65`, then the value of `cos (α - β)/2` is ______.