English

Tanθ(secθ-1)+tanθ(secθ+1)=2secθ - Mathematics

Advertisements
Advertisements

Question

`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`

Sum

Solution

LHS = `(tan theta)/((sec theta -1)) + (tan theta)/((sec theta +1))`

      =`tan theta {(sec^theta +1+ sec theta-1)/((sec theta -1)( sec theta +1))}`

       =` tan theta {(2 sec theta)/(sec^2 theta-1)}`

      =` tan theta xx(2 sec theta)/(tan^2 theta -1)`

      =`2 (sec^theta)/(tan^theta)`

     =`2 (1/cos theta)/(sin theta/cos theta)`

     =`2 1/sin theta`

    =`2 cosec  theta`

    = RHS
Hence, LHS = RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Trigonometric Identities - Exercises 1

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 8 Trigonometric Identities
Exercises 1 | Q 19.1

RELATED QUESTIONS

If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`


(secA + tanA) (1 − sinA) = ______.


Prove the following trigonometric identities

If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2


Prove that  `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2` 


Prove the following identities:

`1/(secA + tanA) = secA - tanA`


Prove the following identities:

`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`


Prove the following identities:

`cosecA - cotA = sinA/(1 + cosA)`


Prove that:

`sqrt(sec^2A + cosec^2A) = tanA + cotA`


(i)` (1-cos^2 theta )cosec^2theta = 1`


`sin theta/((cot theta + cosec  theta)) - sin theta /( (cot theta - cosec  theta)) =2`


If `( tan theta + sin theta ) = m and ( tan theta - sin theta ) = n " prove that "(m^2-n^2)^2 = 16 mn .`


Write the value of `(sin^2 theta 1/(1+tan^2 theta))`. 


If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`


\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to 


(sec A + tan A) (1 − sin A) = ______.


Simplify 

sin A `[[sinA   -cosA],["cos A"  " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`


Prove the following identity : 

`sqrt(cosec^2q - 1) = "cosq  cosecq"`


Prove the following identities:

`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`


Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ)  +  cos2 θ.


Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×