Advertisements
Advertisements
Question
`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`
Solution
LHS = `(tan theta)/((sec theta -1)) + (tan theta)/((sec theta +1))`
=`tan theta {(sec^theta +1+ sec theta-1)/((sec theta -1)( sec theta +1))}`
=` tan theta {(2 sec theta)/(sec^2 theta-1)}`
=` tan theta xx(2 sec theta)/(tan^2 theta -1)`
=`2 (sec^theta)/(tan^theta)`
=`2 (1/cos theta)/(sin theta/cos theta)`
=`2 1/sin theta`
=`2 cosec theta`
= RHS
Hence, LHS = RHS
APPEARS IN
RELATED QUESTIONS
If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`
(secA + tanA) (1 − sinA) = ______.
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Prove the following identities:
`cosecA - cotA = sinA/(1 + cosA)`
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
(i)` (1-cos^2 theta )cosec^2theta = 1`
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
If `( tan theta + sin theta ) = m and ( tan theta - sin theta ) = n " prove that "(m^2-n^2)^2 = 16 mn .`
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
(sec A + tan A) (1 − sin A) = ______.
Simplify
sin A `[[sinA -cosA],["cos A" " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`
Prove the following identity :
`sqrt(cosec^2q - 1) = "cosq cosecq"`
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ) + cos2 θ.
Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)