Advertisements
Advertisements
Question
If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`
Solution
W e have ,
3 `cot theta = 4 `
⇒ ` cot theta = 4/3 `
Now,
`((2 cos theta + sin theta ))/((4 cos theta - sin theta))`
=` (((2 cos theta )/ sin theta + sin theta / sin theta))/(((4 cos theta) / sin theta - sin theta/ sin theta))` (๐ท๐๐ฃ๐๐๐๐๐ ๐๐ข๐๐๐๐๐ก๐๐ ๐๐๐ ๐๐๐๐๐๐๐๐๐ก๐๐ ๐๐ฆ sin ๐)
=`((2 cot theta +1))/((4 cot theta -1))`
=`((2xx4/3 +1))/((4xx4/3-1))`
=`((8/3+1/1))/((16/3-1/1))`
=`(((8+3)/3))/(((16-3)/3))`
=`((11/3))/((13/3))`
=`11/13`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following trigonometric identities.
`tan theta + 1/tan theta = sec theta cosec theta`
Prove the following trigonometric identities
`cos theta/(1 - sin theta) = (1 + sin theta)/cos theta`
Prove the following identities:
`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`
Prove that:
`(sin^2θ)/(cosθ) + cosθ = secθ`
If sinθ = `11/61`, find the values of cosθ using trigonometric identity.
If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.
If sec θ + tan θ = x, then sec θ =
Prove the following identity :
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`
Find the value of sin 30° + cos 60°.
Prove that:
`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)`
Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.
Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ
Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A
If cos A + cos2A = 1, then sin2A + sin4 A = ?
If cosA + cos2A = 1, then sin2A + sin4A = 1.
If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.