English

If Tana + Sina = M and Tana - Sina = N , Prove that ( M 2 − N 2 ) 2 = 16mn - Mathematics

Advertisements
Advertisements

Question

If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn 

Sum

Solution

Consider `(m^2 - n^2) = (tanA + sinA)^2 - (tanA - sinA)^2`

⇒ [tanA + sinA - (tanA - sinA)] [tanA + sinA + (tanA - sinA)]

⇒ [2sinA][2tanA] = 4sinAtanA

Now LHS = `(m^2 - n^2)^2 = (4sinAtanA)^2 = 16sin^2Atan^2A`

Also , RHS = 16mn = 16(tanA + sinA)(tanA - sinA)

⇒ RHS = 16mn = `16(tan^2A - sin^2A) = 16(sin^2A/cos^2A - sin^2A)`

⇒ `16sin^2A((1 - cos^2A)/cos^2A) = 16sin^2A(sin^2A/cos^2A) = 16sin^2Atan^2A`

Thus , `(m^2 - n^2)^2` = 16mn

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Trigonometric Identities - Exercise 21.2

APPEARS IN

Frank Mathematics - Part 2 [English] Class 10 ICSE
Chapter 21 Trigonometric Identities
Exercise 21.2 | Q 8
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×