Advertisements
Advertisements
Question
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
Solution
Consider `(m^2 - n^2) = (tanA + sinA)^2 - (tanA - sinA)^2`
⇒ [tanA + sinA - (tanA - sinA)] [tanA + sinA + (tanA - sinA)]
⇒ [2sinA][2tanA] = 4sinAtanA
Now LHS = `(m^2 - n^2)^2 = (4sinAtanA)^2 = 16sin^2Atan^2A`
Also , RHS = 16mn = 16(tanA + sinA)(tanA - sinA)
⇒ RHS = 16mn = `16(tan^2A - sin^2A) = 16(sin^2A/cos^2A - sin^2A)`
⇒ `16sin^2A((1 - cos^2A)/cos^2A) = 16sin^2A(sin^2A/cos^2A) = 16sin^2Atan^2A`
Thus , `(m^2 - n^2)^2` = 16mn
APPEARS IN
RELATED QUESTIONS
Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`
Prove the following identities:
(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
Prove that:
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
Prove the following identity :
secA(1 - sinA)(secA + tanA) = 1
Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
tan θ × `sqrt(1 - sin^2 θ)` is equal to:
Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`