English

If 5x = sec and find the value of 5 θand5x=tanθ, find the value of 5 (x2-1x2) - Mathematics

Advertisements
Advertisements

Question

If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`

Sum

Solution 1

5`(x^2 - 1/(x^2))`

=`25/5 ( x^2 -1/(x^2))`

=`1/5 (25x^2 - 25/(x^2))`

=`1/5 [ (5x)^2 - (5/x)^2]`

=`1/5 [(sec theta )^2 - ( tan theta )^2 ]`

=`1/5 (sec^2 theta - tan^2 theta)`

=`1/5 (1)`

=`1/5`

shaalaa.com

Solution 2

Given:

5x = sec θ, `5/x` = tan θ

⇒ sec θ = 5x, tan θ = `5/x`

We know that,

⇒ `(5x)^2 - (5/x)^2 = 1`

⇒ `25x^2 - 25/x^2 = 1`

⇒ `25 (x^2 - 1/x^2)=1`

⇒ `5 xx 5 xx (x^2 - 1/x^2)=1`

⇒ `5(x^2 - 1/x^2)`

⇒ `1/5`

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Trigonometric Identities - Exercises 3

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 8 Trigonometric Identities
Exercises 3 | Q 35

RELATED QUESTIONS

If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2

 


Prove the following trigonometric identity.

`cos^2 A + 1/(1 + cot^2 A) = 1`


Prove the following trigonometric identities.

if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`


Prove the following trigonometric identities.

(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A


if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`


Prove the following identities:

`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`


Prove the following identities:

`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`


Prove that:

(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B


Prove the following identities:

`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`


If \[sec\theta + tan\theta = x\] then \[tan\theta =\] 


sec4 A − sec2 A is equal to


Prove the following identity : 

`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`


Without using trigonometric table , evaluate : 

`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`


Find the value of `θ(0^circ < θ < 90^circ)` if : 

`cos 63^circ sec(90^circ - θ) = 1`


If sin θ = `1/2`, then find the value of θ. 


Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle. 


Prove that:

`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`


Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ


`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.


Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×