Advertisements
Advertisements
Question
If x = a sin θ and y = bcos θ , write the value of`(b^2 x^2 + a^2 y^2)`
Solution
`(b^2 x^2 + a^2 y^2)`
=`b^2 (a sin theta )^2 + a^2 ( bcos theta)^2`
=`b^2 a^2 sin^2 theta + a^2 b^2 cos^2 theta`
=`a^2 b^2 ( sin^2 theta + cos ^2 theta)`
=`a^2 b^2 (1)`
=`a^2 b^2`
APPEARS IN
RELATED QUESTIONS
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`
Prove the following trigonometric identities
tan2 A + cot2 A = sec2 A cosec2 A − 2
Prove the following identities:
`cosecA + cotA = 1/(cosecA - cotA)`
(i)` (1-cos^2 theta )cosec^2theta = 1`
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`
If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`
Prove that:
`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.
Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
Prove the following identity :
`sinθ(1 + tanθ) + cosθ(1 +cotθ) = secθ + cosecθ`
Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ
Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.
If 2sin2β − cos2β = 2, then β is ______.