English

If X = a Sin θ and Y = Bcos θ , Write the Value Of`(B^2 X^2 + A^2 Y^2)` - Mathematics

Advertisements
Advertisements

Question

If x =  a sin θ and y = bcos θ , write the value of`(b^2 x^2 + a^2 y^2)`

Solution

`(b^2 x^2 + a^2 y^2)`

=`b^2 (a sin theta )^2 + a^2 ( bcos theta)^2`

=`b^2 a^2 sin^2 theta + a^2 b^2 cos^2 theta`

=`a^2 b^2 ( sin^2 theta + cos ^2 theta)`

=`a^2 b^2 (1)`

=`a^2 b^2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Trigonometric Identities - Exercises 3

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 8 Trigonometric Identities
Exercises 3 | Q 34

RELATED QUESTIONS

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`

 


Prove the following trigonometric identities

tan2 A + cot2 A = sec2 A cosec2 A − 2


Prove the following identities:

`cosecA + cotA = 1/(cosecA - cotA)`


(i)` (1-cos^2 theta )cosec^2theta = 1`


`1+(tan^2 theta)/((1+ sec theta))= sec theta`


`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`


If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`


Prove that:

`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.


Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`


\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to 

 

 


If a cos θ − b sin θ = c, then a sin θ + b cos θ =


Prove the following identity :

`sinθ(1 + tanθ) + cosθ(1 +cotθ) = secθ + cosecθ` 


Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`


If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)


There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.


Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.


If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ


Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2 


If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.


If 2sin2β − cos2β = 2, then β is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×