Advertisements
Advertisements
Question
Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2
Solution
L.H.S = `(1 + sintheta)/(1 - sin theta)`
= `((1 + sintheta)/(costheta))/((1 - sintheta)/(costheta))` ......[Dividing numerator and denominator by cos θ]
= `(1/costheta + (sintheta)/(costheta))/(1/costheta - (sintheta)/(costheta)`
= `(sectheta + tantheta)/(sectheta - tantheta)`
= `(sectheta + tantheta)/(sectheta - tantheta) xx (sectheta + tantheta)/(sectheta + tantheta)` ......[On rationalising the denominator]
= `(sectheta + tantheta)^2/(sec^2theta - tan^2theta)`
= `(sectheta + tantheta)^2/1` ......`[(because 1 + tan^2theta = sec^2theta),(therefore sec^2theta - tan^2theta = 1)]`
= (sec θ + tan θ)2
= R.H.S
∴ `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
(cos A + sin A)2 + (cos A – sin A)2 = 2
Prove that:
(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B
`(1 + cot^2 theta ) sin^2 theta =1`
`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`
`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`
If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`
The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
9 sec2 A − 9 tan2 A is equal to
Prove that:
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1
Without using trigonometric table , evaluate :
`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`
If sin θ = `1/2`, then find the value of θ.
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
`5/(sin^2theta) - 5cot^2theta`, complete the activity given below.
Activity:
`5/(sin^2theta) - 5cot^2theta`
= `square (1/(sin^2theta) - cot^2theta)`
= `5(square - cot^2theta) ......[1/(sin^2theta) = square]`
= 5(1)
= `square`
If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ
Statement 1: sin2θ + cos2θ = 1
Statement 2: cosec2θ + cot2θ = 1
Which of the following is valid?