Advertisements
Advertisements
Question
Prove that:
(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B
Solution
L.H.S. = (1 + tan A . tan B)2 + (tan A – tan B)2
= 1 + tan2 A . tan2 B + 2 tan A . tan B + tan2 A + tan2 B – 2 tan A tan B
= 1 + tan2 A + tan2 B + tan2 A tan2 B
= sec2 A + tan2 B(1 + tan2 A)
= sec2 A + tan2 B sec2 A
= sec2 A(1 + tan2 B)
= sec2 A sec2 B = R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
9 sec2 A − 9 tan2 A is equal to
Prove the following identity :
`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`
Without using trigonometric identity , show that :
`sin42^circ sec48^circ + cos42^circ cosec48^circ = 2`
Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2.
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1
Prove the following identity:
(sin2θ – 1)(tan2θ + 1) + 1 = 0