Advertisements
Advertisements
Question
Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2.
Solution
L.H.S:`(1+(cos A)/(sinA)-1/(sinA))(1+(sinA)/(cosA)+1/(cosA))`
=`((sinA+cosA-1)/sinA)((cosA+sinA+1)/(cos A))`
=`((sinA+cosA)^2-(1)^2)/(sin A. cos A)`
=`(sin^2A +cos^2A+2sinA.cosA-1)/(sinA.cosA)`
=`(1+2sinA.cosA-1)/(sinA.cosA)`
=2
Hence, L.H.S =R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove that:
sec2θ + cosec2θ = sec2θ x cosec2θ
Prove the following trigonometric identities.
`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
Prove the following identities:
(cosec A + sin A) (cosec A – sin A) = cot2 A + cos2 A
`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`
If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ?
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
Prove the following identity :
`(1 + tan^2θ)sinθcosθ = tanθ`
Without using trigonometric identity , show that :
`cos^2 25^circ + cos^2 65^circ = 1`
Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.
Choose the correct alternative:
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
If 1 – cos2θ = `1/4`, then θ = ?
If 3 sin θ = 4 cos θ, then sec θ = ?
Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A