Advertisements
Advertisements
Question
If 1 – cos2θ = `1/4`, then θ = ?
Solution
1 – cos2θ = `1/4` ......[Given]
∴ sin2θ = `1/4` .....`[(because sin^2theta + cos^2theta = 1),(therefore 1 - cos^2theta = sin^2theta)]`
∴ sin θ = `1/2` ......[Taking square root of both sides]
∴ θ = 30° ......`[because sin 30^circ = 1/2]`
APPEARS IN
RELATED QUESTIONS
If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2
Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`
Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`
Prove the following identities:
`((1 + tan^2A)cotA)/(cosec^2A) = tan A`
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2
If sinθ = `11/61`, find the values of cosθ using trigonometric identity.
If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.
If \[sec\theta + tan\theta = x\] then \[tan\theta =\]
Prove the following identity :
`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`
Prove the following identity :
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`
Evaluate:
`(tan 65°)/(cot 25°)`
A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.
Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B
If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.
`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.