English

If 1 – cos2θ = 14, then θ = ? - Geometry Mathematics 2

Advertisements
Advertisements

Question

If 1 – cos2θ = `1/4`, then θ = ?

Sum

Solution

1 – cos2θ = `1/4`      ......[Given]

∴ sin2θ = `1/4`     .....`[(because sin^2theta + cos^2theta = 1),(therefore 1 - cos^2theta = sin^2theta)]`

∴ sin θ = `1/2`    ......[Taking square root of both sides]

∴ θ = 30°     ......`[because sin 30^circ = 1/2]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Q.1 (B)

RELATED QUESTIONS

If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2

 


Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`


Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`


Prove the following identities:

`((1 + tan^2A)cotA)/(cosec^2A) = tan A`


Prove the following identities:

`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`


If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2


If sinθ = `11/61`, find the values of cosθ using trigonometric identity.


If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.


If \[sec\theta + tan\theta = x\] then \[tan\theta =\] 


Prove the following identity :

`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`


Prove the following identity : 

`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`


Evaluate:
`(tan 65°)/(cot 25°)`


A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.


Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.


If x = h + a cos θ, y = k + b sin θ. 
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.


If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`


Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B


If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.


If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.


`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×