Advertisements
Advertisements
Question
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
Solution
L.H.S. = `1/(1 - sinA) + 1/(1 + sinA)`
= `(1 + sinA + 1 - sinA)/((1 - sinA)(1 + sinA))`
= `2/(1 - sin^2A)`
= `2/cos^2A`
= 2 sec2 A = R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove the following trigonometric identities.
`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`
Prove the following identities:
`(cosecA - 1)/(cosecA + 1) = (cosA/(1 + sinA))^2`
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that `x^2 + y^2 + z^2 = r^2`
Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A
Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.
Activity:
L.H.S = `square`
= `cos^2theta xx square .....[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= R.H.S
tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= R.H.S
Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1