Advertisements
Advertisements
Question
Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1
Solution
L.H.S = `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")`
= `"cot A"/(1 - 1/(tan"A")) + "tan A"/(1 - tan "A")`
= `"cot A"/((tan "A" - 1)/(tan "A")) + "tan A"/(1 - tan "A")`
= `"cot A tan A"/(tan "A" - 1) + "tan A"/(1 - tan "A")`
= `1/(tan "A" - 1) + "tan A"/(1 - tan "A")` ......[∵ cot A tan A = 1]
= `- 1/(1 - tan "A") + "tan A"/(1 - tan "A")`
= `- (1/(1 -tan "A") - "tan A"/(1- tan "A"))`
= `-((1 - tan "A")/(1 - tan "A"))`
= – 1
= R.H.S
∴ `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1
APPEARS IN
RELATED QUESTIONS
9 sec2 A − 9 tan2 A = ______.
Prove the following trigonometric identities.
`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`
Prove the following trigonometric identities.
`(cos^2 theta)/sin theta - cosec theta + sin theta = 0`
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
Prove the following trigonometric identities.
tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B
Prove the following identities:
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`
If tan A =` 5/12` , find the value of (sin A+ cos A) sec A.
If `sec theta + tan theta = x," find the value of " sec theta`
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
Prove that:
`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)`
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.
Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
Prove the following identities.
sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1
If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1
If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ
Activity:
`square` = 1 + tan2θ ......[Fundamental trigonometric identity]
`square` – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = `square`
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `square`
Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ
sec θ when expressed in term of cot θ, is equal to ______.