Advertisements
Advertisements
Question
Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`
Solution
LHS = `(sec θ - tan θ)/(sec θ + tan θ )`
= `(sec θ - tan θ)/(sec θ + tan θ ) xx (sec θ - tan θ)/(sec θ - tan θ )`
= `(sec θ - tan θ)^2/(sec^2θ - tan^2θ )`
= `(sec^2θ + tan^2θ - 2sec θ.tan θ )/1`
= 1 + 2 tan2θ - 2 sec θ. tan θ
= R.H.S.
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Prove the following trigonometric identities
sec4 A(1 − sin4 A) − 2 tan2 A = 1
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
Prove the following identity :
`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`
If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`
Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`
For ΔABC , prove that :
`sin((A + B)/2) = cos"C/2`
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
sin2θ + sin2(90 – θ) = ?