English

If cos A = 7 25 find the value of tan A + cot A. - Mathematics

Advertisements
Advertisements

Question

If \[\cos A = \frac{7}{25}\]  find the value of tan A + cot A. 

Sum

Solution

Given:  `cos A=7/25` 

We know that, 

`sin^2 A+cos^2 A=1` 

⇒` sin^2 A+(7/25)^2=1` 

⇒` sin^2 A+49/625=1` 

⇒` sin^2 A1-49/625` 

⇒ `sin^2A=576/625` 

⇒ `sin A=24/25` 

Therefore, 

`tan A+cot A= sin A/cos A+cos A/sin A` 

=` (24/25)/(7/25)+1=(7/25)/(24/25)` 

= `24/7+7/24` 

=`((24)^2+(7)^2)/168`  

=`(576+49)/168` 

=`625/168`

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.3 [Page 55]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.3 | Q 16 | Page 55

RELATED QUESTIONS

Prove the following identities:

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`


Prove the following identities:

`cosecA - cotA = sinA/(1 + cosA)`


If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.


`cot theta/((cosec  theta + 1) )+ ((cosec  theta +1 ))/ cot theta = 2 sec theta `


If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`


Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`


If a cos θ − b sin θ = c, then a sin θ + b cos θ =


Prove the following identity : 

`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`


Prove the following identity : 

`(1 + cotA + tanA)(sinA - cosA) = secA/(cosec^2A) - (cosecA)/sec^2A`


Find A if tan 2A = cot (A-24°).


Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`


Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.


Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.


Prove the following identities.

tan4 θ + tan2 θ = sec4 θ – sec2 θ


If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to


If tan θ + cot θ = 2, then tan2θ + cot2θ = ?


Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ


If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ


If cos A + cos2A = 1, then sin2A + sin4 A = ?


If cot θ = `40/9`, find the values of cosec θ and sinθ,

We have, 1 + cot2θ = cosec2θ

1 + `square` = cosec2θ

1 + `square` = cosec2θ

`(square + square)/square` = cosec2θ

`square/square` = cosec2θ  ......[Taking root on the both side]

cosec θ = `41/9`

and sin θ = `1/("cosec"  θ)`

sin θ = `1/square`

∴ sin θ =  `9/41`

The value is cosec θ = `41/9`, and sin θ = `9/41`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×