Advertisements
Advertisements
Question
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
Solution
Given: `cos A=7/25`
We know that,
`sin^2 A+cos^2 A=1`
⇒` sin^2 A+(7/25)^2=1`
⇒` sin^2 A+49/625=1`
⇒` sin^2 A1-49/625`
⇒ `sin^2A=576/625`
⇒ `sin A=24/25`
Therefore,
`tan A+cot A= sin A/cos A+cos A/sin A`
=` (24/25)/(7/25)+1=(7/25)/(24/25)`
= `24/7+7/24`
=`((24)^2+(7)^2)/168`
=`(576+49)/168`
=`625/168`
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
Prove the following identities:
`cosecA - cotA = sinA/(1 + cosA)`
If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.
`cot theta/((cosec theta + 1) )+ ((cosec theta +1 ))/ cot theta = 2 sec theta `
If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`
Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
Prove the following identity :
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
Prove the following identity :
`(1 + cotA + tanA)(sinA - cosA) = secA/(cosec^2A) - (cosecA)/sec^2A`
Find A if tan 2A = cot (A-24°).
Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`
Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.
Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.
Prove the following identities.
tan4 θ + tan2 θ = sec4 θ – sec2 θ
If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ
If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ
If cos A + cos2A = 1, then sin2A + sin4 A = ?
If cot θ = `40/9`, find the values of cosec θ and sinθ,
We have, 1 + cot2θ = cosec2θ
1 + `square` = cosec2θ
1 + `square` = cosec2θ
`(square + square)/square` = cosec2θ
`square/square` = cosec2θ ......[Taking root on the both side]
cosec θ = `41/9`
and sin θ = `1/("cosec" θ)`
sin θ = `1/square`
∴ sin θ = `9/41`
The value is cosec θ = `41/9`, and sin θ = `9/41`