Advertisements
Advertisements
Question
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
Solution
L.H.S. = `(cotA + cosecA - 1)/(cotA - cosecA + 1)`
= `(cotA + cosecA - (cosec^2A - cot^2A))/(cotA - cosecA + 1)` ...[cosec2A – cot2A = 1]
= `(cotA + cosecA - [(cosecA - cotA)(cosecA + cotA)])/(cotA - cosecA + 1`
= `(cotA + cosecA[1 - cosecA + cotA])/(cotA - cosecA + 1)`
= cot A + cosec A
= `cosA/sinA + 1/sinA`
= `(1 + cosA)/sinA`
APPEARS IN
RELATED QUESTIONS
If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`
[Hint: Write the expression in terms of sinθ and cosθ]
Prove the following identities:
`1 - sin^2A/(1 + cosA) = cosA`
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
Prove the following identity :
`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`
Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ