Advertisements
Advertisements
प्रश्न
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
उत्तर
L.H.S. = `(cotA + cosecA - 1)/(cotA - cosecA + 1)`
= `(cotA + cosecA - (cosec^2A - cot^2A))/(cotA - cosecA + 1)` ...[cosec2A – cot2A = 1]
= `(cotA + cosecA - [(cosecA - cotA)(cosecA + cotA)])/(cotA - cosecA + 1`
= `(cotA + cosecA[1 - cosecA + cotA])/(cotA - cosecA + 1)`
= cot A + cosec A
= `cosA/sinA + 1/sinA`
= `(1 + cosA)/sinA`
APPEARS IN
संबंधित प्रश्न
If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following identities:
(1 + cot A – cosec A)(1 + tan A + sec A) = 2
If `( tan theta + sin theta ) = m and ( tan theta - sin theta ) = n " prove that "(m^2-n^2)^2 = 16 mn .`
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
Prove that `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`
Prove the following identities.
`costheta/(1 + sintheta)` = sec θ – tan θ
Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.
If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.