Advertisements
Advertisements
प्रश्न
Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0
उत्तर
L.H.S = `cot^2"A"[(sec"A" - 1)/(1 + sin "A")] + sec^2"A"[(sin"A" - 1)/(1 + sec"A")]`
= `(cot^2"A"(sec"A" - 1)(sec"A" + 1) + sec^2"A"(sin"A" - 1)(sin"A" + 1))/((1 + sin"A")(1 + sec"A"))`
= `(cot^2"A"(sec^2"A" - 1) + sec^2"A"(sin^2"A" - 1))/((1 + sin"A")(1 + sec"A"))`
= `(cot^2"A" xx tan^2"A" + sec^2"A"( - cos^2"A"))/((1 + sin"A")(1 + sec"A"))`
= `(cot^2"A" xx 1/cot^2"A" - sec^2"A" xx 1/sec^2"A")/((1 + sin"A")(1 + sec"A"))`
= `(1 - 1)/((1 + sin"A")(1+ sec"A"))`
= `0/((1 + sin"A")(1 + sec"A"))`
= 0
L.H.S = R.H.S
Hence it is proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
Prove the following trigonometric identities:
`(1 - cos^2 A) cosec^2 A = 1`
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
Prove the following identities:
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`tan35^circ cot(90^circ - θ) = 1`
Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.