Advertisements
Advertisements
प्रश्न
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ
उत्तर
L.H.S = `(tan^2 theta - 1)/(tan^2 theta + 1)`
= `(tan^2 theta - 1)/(sec^2 theta)`
= `(sin^2 theta)/(cos^2 theta) - 1 ÷ 1/(cos^2 theta)`
= `(sin^2 theta - cos^2 theta)/(cos^2 theta) xx (cos^2 theta)/1`
= sin2θ − cos2θ
= 1 − cos2θ − cos2θ
= 1 – cos2θ
L.H.S = R.H.S
Hence it is proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
Prove the following trigonometric identities.
`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`
Prove the following identities:
`((1 + tan^2A)cotA)/(cosec^2A) = tan A`
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`
Write the value of `(cot^2 theta - 1/(sin^2 theta))`.
If tan A =` 5/12` , find the value of (sin A+ cos A) sec A.
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.