Advertisements
Advertisements
प्रश्न
Write the value of `(cot^2 theta - 1/(sin^2 theta))`.
उत्तर
`(cot^2 theta - 1/ sin^2 theta)`
=`(cot^2 theta - cosec^2 theta )`
=-1
APPEARS IN
संबंधित प्रश्न
Express the ratios cos A, tan A and sec A in terms of sin A.
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
Prove the following trigonometric identities.
`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`
Prove the following identities:
`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`
Prove that
`cot^2A-cot^2B=(cos^2A-cos^2B)/(sin^2Asin^2B)=cosec^2A-cosec^2B`
`cosec theta (1+costheta)(cosectheta - cot theta )=1`
` tan^2 theta - 1/( cos^2 theta )=-1`
`(tan A + tanB )/(cot A + cot B) = tan A tan B`
If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.
\[\frac{x^2 - 1}{2x}\] is equal to
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
Prove that:
tan (55° + x) = cot (35° – x)
Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.
If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.
Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.
If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1
Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`
Show that `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.