Advertisements
Advertisements
Question
Write the value of `(cot^2 theta - 1/(sin^2 theta))`.
Solution
`(cot^2 theta - 1/ sin^2 theta)`
=`(cot^2 theta - cosec^2 theta )`
=-1
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
(1 – tan A)2 + (1 + tan A)2 = 2 sec2A
If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.
Prove the following identities:
`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`
Prove the following identities:
`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
Prove that:
(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A
(i)` (1-cos^2 theta )cosec^2theta = 1`
`(sec^2 theta-1) cot ^2 theta=1`
`(1+ cos theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
Find the value of sin ` 48° sec 42° + cos 48° cosec 42°`
If `secθ = 25/7 ` then find tanθ.
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
Prove the following identity :
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove the following identity :
`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`
Without using trigonometric table , evaluate :
`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`
Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.
If tan θ = `9/40`, complete the activity to find the value of sec θ.
Activity:
sec2θ = 1 + `square` ......[Fundamental trigonometric identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square`
sec θ = `square`
If cos θ = `24/25`, then sin θ = ?