Advertisements
Advertisements
Question
`(sec^2 theta-1) cot ^2 theta=1`
Solution
LHS = `(sec^2 theta -1 ) cot^2 theta`
=`tan^2theta xx cot^2 theta (∵ sec^2 theta - tan^2 theta =1)`
=`1/(cot^2theta) xx cot^2 theta`
=1
=RHS
APPEARS IN
RELATED QUESTIONS
If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
`cot^2 theta - 1/(sin^2 theta ) = -1`a
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
Prove the following identity :
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Prove the following identity :
`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`
For ΔABC , prove that :
`sin((A + B)/2) = cos"C/2`
Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle.
Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`
Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.
Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.
Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.
Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B
If tan α + cot α = 2, then tan20α + cot20α = ______.