English

`(Sec^2 Theta-1) Cot ^2 Theta=1` - Mathematics

Advertisements
Advertisements

Question

`(sec^2 theta-1) cot ^2 theta=1`

Solution

LHS = `(sec^2 theta -1 ) cot^2 theta`

       =`tan^2theta  xx cot^2 theta       (∵ sec^2 theta - tan^2 theta =1)`

     =`1/(cot^2theta) xx cot^2 theta`

    =1

    =RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Trigonometric Identities - Exercises 1

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 8 Trigonometric Identities
Exercises 1 | Q 2.1

RELATED QUESTIONS

If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`


Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.


If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2


Prove that:

(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1


`cot^2 theta - 1/(sin^2 theta ) = -1`a


`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`


If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`


Write the value of `( 1- sin ^2 theta  ) sec^2 theta.`


Write the value of `(sin^2 theta 1/(1+tan^2 theta))`. 


Prove the following identity : 

`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`


Prove the following identity : 

`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`


For ΔABC , prove that : 

`sin((A + B)/2) = cos"C/2`


Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle. 


Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`


Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.


Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.


Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.


Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.


Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B


If tan α + cot α = 2, then tan20α + cot20α = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×