Advertisements
Advertisements
Question
Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle.
Solution
In a right angles triangle ABC, right-angled at B, according to the Pythagoras theorem
AB2 + BC2 = AC2
According to the distance formula, the distance 'd' between two points (a,b) and (c,d) is given by
`d = root(2)((a - c)^2 + (b - d)^2`....(1)
For the given points Distance between P and Q is
PQ = `sqrt((-2-2)^2 + (2 - 2)^2) = sqrt(16)`
QR = `sqrt((2-2)^2 + (7 - 2)^2) = sqrt(25)`
PR = `sqrt((-2-2)^2 + (2 - 7)^2) = sqrt(16 + 25) = sqrt(41)`
PQ2 = 16
QR2 = 25
PR2 = 41
As PQ2 + QR2 = PR2
Hence the given points form a right-angled triangle.
APPEARS IN
RELATED QUESTIONS
Prove that:
sec2θ + cosec2θ = sec2θ x cosec2θ
Prove the following trigonometric identities.
`sin^2 A + 1/(1 + tan^2 A) = 1`
Prove the following trigonometric identities
cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1
Prove the following trigonometric identities.
sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B
Prove the following identities:
(cos A + sin A)2 + (cos A – sin A)2 = 2
Prove the following identities:
`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`
Show that : tan 10° tan 15° tan 75° tan 80° = 1
Prove the following identities:
`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`
`cosec theta (1+costheta)(cosectheta - cot theta )=1`
`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`
If `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
sec4 A − sec2 A is equal to
Prove the following identity :
`1/(tanA + cotA) = sinAcosA`
Prove the following identity :
`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`
Evaluate:
`(tan 65^circ)/(cot 25^circ)`
Prove the following identities.
sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1
Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`
If 2sin2θ – cos2θ = 2, then find the value of θ.
If tan θ = `x/y`, then cos θ is equal to ______.