Advertisements
Advertisements
Question
If cosθ = `5/13`, then find sinθ.
Solution
cosθ = `5/13`
`sin^2θ + cos^2θ = 1`
`sin^2θ + (5/13)^2 = 1`
`sin^2θ = (1 - 25)/169`
`sin^2θ = (169 - 25)/169`
`sin^2θ = 144/169`
sinθ = `sqrt(144/169)`
sinθ = `12/13`
APPEARS IN
RELATED QUESTIONS
Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`
(secA + tanA) (1 − sinA) = ______.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`
Prove the following trigonometric identities.
`(tan A + tan B)/(cot A + cot B) = tan A tan B`
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =
The value of sin2 29° + sin2 61° is
(sec A + tan A) (1 − sin A) = ______.
If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that `x^2 + y^2 + z^2 = r^2`
Prove that `(sin θ tan θ)/(1 - cos θ) = 1 + sec θ.`
Without using trigonometric table, prove that
`cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°) = 2`
If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`
Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.
`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.