English

If X = a Sec θ and Y = B Tan θ, Then B2x2 − A2y2 = - Mathematics

Advertisements
Advertisements

Question

If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =

Options

  •  ab

  • a2 − b2

  •  a2 + b2

  • a2 b2

MCQ

Solution

Given:

`x= a secθ, y=b tanθ`

So,

`b^2x^2-a^2 y^2` 

=` b^2(a secθ)^2-a^2(btan θ)^2` 

= `b^2 a^2 sec^2 θ-a^2 b^2 tan^2θ`

=` b^2 a^2 (sec^2θ-tan^2 θ)`

We know that,`

`sec^2θ-tan^2θ=1`

Therfore, 

`b^2x^2-a^2y^2=a^2b^2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.4 [Page 57]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.4 | Q 13 | Page 57

RELATED QUESTIONS

If secθ + tanθ = p, show that `(p^{2}-1)/(p^{2}+1)=\sin \theta`


Prove that `cosA/(1+sinA) + tan A =  secA`


Prove the following trigonometric identities

`cos theta/(1 - sin theta) = (1 + sin theta)/cos theta`


Prove the following trigonometric identities.

`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`


Prove the following trigonometric identities.

`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`


Prove the following identities:

`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`


Prove that:

`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`


If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m


\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to 


If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]


Simplify 

sin A `[[sinA   -cosA],["cos A"  " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`


Prove the following identity : 

`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`


Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.


Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.


If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1


Prove that sin4A – cos4A = 1 – 2cos2A


Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1


`sqrt((1 - cos^2theta) sec^2 theta) = tan theta` 


Prove the following:

`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×