Advertisements
Advertisements
Question
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]
Options
\[\frac{z^2}{c^2}\]
\[1 - \frac{z^2}{c^2}\]
\[\frac{z^2}{c^2} - 1\]
\[1 + \frac{z^2}{c^2}\]
Solution
Given:
`x= a secθcosΦ`
`⇒ x/a=secθ cosΦ `
`y=b sec θ sinΦ `
`⇒ y/b=secθ sinΦ `
`z=c tan θ`
`z/c= tan θ`
Now,
`(x/a)^2+(y/b)^2-(z/c)^2=(secθ cosΦ)^2+(secθ sin Φ)^2-(tanθ )^2`
`⇒ x^2/a^2+y^2/b^2-z^2/c^2= sec^2θcos^2 Φ+sec^2θsin^2Φ-tan^2θ`
`⇒ x^2/a^2+y^2/b^2-z^2/c^2=(sec^2θ cos^2Φ+sec^2θ sin^2 sin^2Φ)-tan^2Φ`
`⇒ x^2/a^2+y^2/b^2-z^2/c^2=sec^2θ(cos^2Φ+sin^2Φ)-tan^2θ`
`⇒ x^2/a^2+y^2/b^2-z^2/c^2= sec^2θ(1)-tan^2θ`
`⇒ x^2/a^2+y^2/b^2-z^2/c^2=sec^2θ-tan^2θ`
`⇒ x^2/a^2+y^2/b^2-z^2/c^2=1`
`⇒x^2/a^2+y^2/b^2=1+z^2/c^2`
APPEARS IN
RELATED QUESTIONS
As observed from the top of an 80 m tall lighthouse, the angles of depression of two ships on the same side of the lighthouse of the horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest meter.
Prove the following identities:
cosec4 A – cosec2 A = cot4 A + cot2 A
Prove the following identities:
(cos A + sin A)2 + (cos A – sin A)2 = 2
If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A
Prove that:
(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A
If sinθ = `11/61`, find the values of cosθ using trigonometric identity.
Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:
sin θ × cosec θ = ______
What is the value of (1 − cos2 θ) cosec2 θ?
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.
Prove the following identities.
tan4 θ + tan2 θ = sec4 θ – sec2 θ
Prove the following identities.
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1
tan θ cosec2 θ – tan θ is equal to
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ
Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ
If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ
If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.
Complete the following activity to prove:
cotθ + tanθ = cosecθ × secθ
Activity: L.H.S. = cotθ + tanθ
= `cosθ/sinθ + square/cosθ`
= `(square + sin^2theta)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ....... ∵ `square`
= `1/sinθ xx 1/cosθ`
= `square xx secθ`
∴ L.H.S. = R.H.S.
`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.