English

If X = a Sec θ Cos ϕ, Y = B Sec θ Sin ϕ and Z = C Tan θ, Then X 2 a 2 + Y 2 B 2 - Mathematics

Advertisements
Advertisements

Question

If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]

Options

  • \[\frac{z^2}{c^2}\]

  • \[1 - \frac{z^2}{c^2}\]

  • \[\frac{z^2}{c^2} - 1\]

  • \[1 + \frac{z^2}{c^2}\]

MCQ

Solution

Given: 

`x= a secθcosΦ` 

`⇒ x/a=secθ cosΦ `

`y=b sec θ sinΦ `

`⇒ y/b=secθ sinΦ `

`z=c tan θ`

`z/c= tan θ` 

Now, 

`(x/a)^2+(y/b)^2-(z/c)^2=(secθ cosΦ)^2+(secθ sin Φ)^2-(tanθ )^2` 

`⇒ x^2/a^2+y^2/b^2-z^2/c^2= sec^2θcos^2 Φ+sec^2θsin^2Φ-tan^2θ`

`⇒ x^2/a^2+y^2/b^2-z^2/c^2=(sec^2θ cos^2Φ+sec^2θ sin^2 sin^2Φ)-tan^2Φ`

`⇒ x^2/a^2+y^2/b^2-z^2/c^2=sec^2θ(cos^2Φ+sin^2Φ)-tan^2θ`

`⇒ x^2/a^2+y^2/b^2-z^2/c^2= sec^2θ(1)-tan^2θ`

`⇒ x^2/a^2+y^2/b^2-z^2/c^2=sec^2θ-tan^2θ`

`⇒ x^2/a^2+y^2/b^2-z^2/c^2=1` 

`⇒x^2/a^2+y^2/b^2=1+z^2/c^2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.4 [Page 58]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.4 | Q 23 | Page 58

RELATED QUESTIONS

As observed from the top of an 80 m tall lighthouse, the angles of depression of two ships on the same side of the lighthouse of the horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest meter.


Prove the following identities:

cosecA – cosec2 A = cot4 A + cot2 A


Prove the following identities:

(cos A + sin A)2 + (cos A – sin A)2 = 2


If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A


Prove that:

(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A


If sinθ = `11/61`, find the values of cosθ using trigonometric identity.


Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:

sin θ × cosec θ = ______


What is the value of (1 − cos2 θ) cosec2 θ? 


Prove the following identity :

`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`


There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.


Prove the following identities.

tan4 θ + tan2 θ = sec4 θ – sec2 θ


Prove the following identities.

(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2


Prove the following identities.

sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1


tan θ cosec2 θ – tan θ is equal to


Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ


Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ


If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ


If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.


Complete the following activity to prove:

cotθ + tanθ = cosecθ × secθ

Activity: L.H.S. = cotθ + tanθ

= `cosθ/sinθ + square/cosθ`

= `(square + sin^2theta)/(sinθ xx cosθ)`

= `1/(sinθ xx  cosθ)` ....... ∵ `square`

= `1/sinθ xx 1/cosθ`

= `square xx secθ`

∴ L.H.S. = R.H.S.


`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×