Advertisements
Advertisements
Question
Prove the following identities.
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
Solution
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
L.H.S = [(sin θ + sec θ)2 + (cos θ + cosec θ)2]
= [sin2 θ + sec2 θ + 2 sin θ sec θ + cos2 θ + cosec2 θ + 2 cos θ cosec θ]
= (sin2 θ + cos2 θ) + (sec2 θ + cosec2 θ) + 2 (sin θ sec θ + cos θ cosec θ)
= `1 + sec^2 theta + "cosec"^2 theta + 2[sin theta xx 1/cos theta + cos theta xx 1/sin theta]`
= `1 + sec^2 theta + "cosec"^2 theta + 2 [(sin^2 theta + cos^2 theta)/(sintheta cos theta)]`
= `1 + sec^2 theta + "cosec"^2 theta + 2 xx 1/(sintheta costheta)`
= 1 + sec2 θ + cosec2 θ + 2 sec θ cosec θ
= 1 + (sec θ + cosec θ)2
L.H.S = R.H.S
∴ (sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`
Find the value of sin ` 48° sec 42° + cos 48° cosec 42°`
Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
sec4 A − sec2 A is equal to
Prove the following identity :
`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`
Prove the following identity :
`cos^4A - sin^4A = 2cos^2A - 1`
Prove the following identity :
`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`
Choose the correct alternative:
1 + cot2θ = ?
If cosA + cos2A = 1, then sin2A + sin4A = 1.
Prove the following identity:
(sin2θ – 1)(tan2θ + 1) + 1 = 0