Advertisements
Advertisements
Question
If cosA + cos2A = 1, then sin2A + sin4A = 1.
Options
True
False
Solution
This statement is True.
Explanation:
∵ cosA + cos2A = 1
⇒ cosA = 1 – cos2A = sin2A ...[∵ sin2A + cos2A = 1]
⇒ cos2A = sin4A
⇒ 1 – sin2A = sin4A ...[∵ cos2A = 1 – sin2A]
⇒ sin2A + sin4A = 1
APPEARS IN
RELATED QUESTIONS
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`
`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`
Write the value of `4 tan^2 theta - 4/ cos^2 theta`
If `sin theta = x , " write the value of cot "theta .`
Prove the following identity :
`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`
Prove the following identity :
`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`
Prove that:
`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`
Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.
Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.
Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.
The value of sin2θ + `1/(1 + tan^2 theta)` is equal to
Choose the correct alternative:
Which is not correct formula?
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`
Prove that `1/("cosec" theta - cot theta)` = cosec θ + cot θ
If sin A = `1/2`, then the value of sec A is ______.
Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?
Statement 1: sin2θ + cos2θ = 1
Statement 2: cosec2θ + cot2θ = 1
Which of the following is valid?