Advertisements
Advertisements
Question
Prove the following identity :
`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`
Solution
LHS = `(cot^2θ(secθ - 1))/((1 + sinθ)) `
= `(cot^2θ(secθ - 1)(1 - sinθ)(secθ + 1))/((1 + sinθ)(1 - sinθ)(secθ + 1))`
= `(cot^2θ(secθ - 1)(secθ + 1)(1 - sinθ))/((1 + sinθ)(1 - sinθ)(secθ + 1))`
= `(cot^2θ(sec^2θ - 1)(1 - sinθ))/((1 - sin^2θ)(1 + secθ))`
= `(cot^2θ(tan^2θ)(1 - sinθ))/((cos^2θ)(1 + secθ))` (∵ `tan^2θ = sec^2θ - 1,1 - sin^2θ = cos^2θ`)
= `((cotθtanθ)^2(1 - sinθ))/((cos^2θ)(1 + secθ))`
= `(1(1 - sinθ))/((cos^2θ)(1 + secθ))` (∵ cotθtanθ = 1)
= `sec^2θ((1 - sinθ)/(1 + secθ))`
APPEARS IN
RELATED QUESTIONS
Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`
Prove the following trigonometric identities.
if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`
Prove the following identities:
`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`
If 4 cos2 A – 3 = 0, show that: cos 3 A = 4 cos3 A – 3 cos A
Prove that:
Sin4θ - cos4θ = 1 - 2cos2θ
Without using trigonometric identity , show that :
`sin(50^circ + θ) - cos(40^circ - θ) = 0`
Find the value of sin 30° + cos 60°.
Find A if tan 2A = cot (A-24°).
Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`
Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tan2 θ + cot2 θ.