English

Prove the Following Identity : Cot 2 θ ( Sec θ − 1 ) ( 1 + Sin θ ) = Sec 2 θ ( 1 − Sin θ 1 + Sec θ ) - Mathematics

Advertisements
Advertisements

Question

Prove the following identity :

`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`

Sum

Solution

LHS = `(cot^2θ(secθ - 1))/((1 + sinθ)) `

= `(cot^2θ(secθ - 1)(1 - sinθ)(secθ + 1))/((1 + sinθ)(1 - sinθ)(secθ + 1))`

= `(cot^2θ(secθ - 1)(secθ + 1)(1 - sinθ))/((1 + sinθ)(1 - sinθ)(secθ + 1))`

= `(cot^2θ(sec^2θ - 1)(1 - sinθ))/((1 - sin^2θ)(1 + secθ))`

= `(cot^2θ(tan^2θ)(1 - sinθ))/((cos^2θ)(1 + secθ))`    (∵ `tan^2θ = sec^2θ - 1,1 - sin^2θ = cos^2θ`)

= `((cotθtanθ)^2(1 - sinθ))/((cos^2θ)(1 + secθ))`

= `(1(1 - sinθ))/((cos^2θ)(1 +  secθ))`    (∵ cotθtanθ = 1)

= `sec^2θ((1 - sinθ)/(1 + secθ))`

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Trigonometric Identities - Exercise 21.1

APPEARS IN

Frank Mathematics - Part 2 [English] Class 10 ICSE
Chapter 21 Trigonometric Identities
Exercise 21.1 | Q 6.14
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×