Advertisements
Advertisements
Question
Without using trigonometric identity , show that :
`sin(50^circ + θ) - cos(40^circ - θ) = 0`
Solution
`sin(50^circ + θ) - cos(40^circ - θ) = 0`
`sin(50^circ + θ) = cos[90^circ - (50^circ + θ)] = cos(40^circ - θ)`
`sin(50^circ + θ) - cos(40^circ - θ)`
= `cos(40^circ - θ) - cos(40^circ - θ)`
= 0
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`
If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2
Prove the following identities:
(1 + tan A + sec A) (1 + cot A – cosec A) = 2
If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`
Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ
If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ.
Prove the following identity :
cosecθ(1 + cosθ)(cosecθ - cotθ) = 1
Prove the following identities:
`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.
Choose the correct alternative:
1 + cot2θ = ?
If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.