Advertisements
Advertisements
Question
Without using trigonometric identity , show that :
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
Solution
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
Consider `tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ`
⇒ `tan(90^circ - 80^circ) - tan(90^circ - 70^circ) tan30^circ tan70^circ tan80^circ`
⇒ `cot80^circ . cot70^circ .tan30^circ tan70^circ tan80^circ`
⇒ `tan30^circ = 1/sqrt(3)` [As tanθ cotθ = 1]
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`(cosecA - 1)/(cosecA + 1) = (cosA/(1 + sinA))^2`
`(1+ cos theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`
`(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) = 2/((sin^2 theta - cos ^2 theta)) = 2/((2 sin^2 theta -1))`
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
Prove the following identity :
`cosA/(1 - tanA) + sinA/(1 - cotA) = sinA + cosA`
Prove the following identity :
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Prove the following identity :
`(cosecθ)/(tanθ + cotθ) = cosθ`
Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A
Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.
If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.