Advertisements
Advertisements
Question
`(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) = 2/((sin^2 theta - cos ^2 theta)) = 2/((2 sin^2 theta -1))`
Solution
We have , `(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) `
=`((sin theta + cos theta )^2 + (sin theta - cos theta)^2) /((sin theta - cos theta )(sin theta + cos theta))`
=`(sin^2 theta + cos ^2 theta + 2 sin theta cos theta + sin^2 theta + cos^2 theta -2 sin theta cos theta)/(sin^2 theta - cos ^2 theta)`
=`(1+1)/(sin^2 theta - cos^2 theta)`
=`2/(sin^2 theta - cos^2 theta)`
Again ,` 2/(sin^2 theta - cos^2 theta)`
=`2/(sin^2 theta -(1-sin^2 theta))`
=`2/(2 sin ^2 theta -1)`
APPEARS IN
RELATED QUESTIONS
Express the ratios cos A, tan A and sec A in terms of sin A.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`
[Hint: Write the expression in terms of sinθ and cosθ]
Prove the following identities:
`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`
Prove the following identities:
`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`
`(sec^2 theta-1) cot ^2 theta=1`
`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`
If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`
Write the value of tan10° tan 20° tan 70° tan 80° .
If x = a sin θ and y = bcos θ , write the value of`(b^2 x^2 + a^2 y^2)`
Prove that:
`(sin^2θ)/(cosθ) + cosθ = secθ`
If cos A + cos2 A = 1, then sin2 A + sin4 A =
Prove the following identity :
`1/(tanA + cotA) = sinAcosA`
Prove the following identity :
`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`
Prove that `(sin θ tan θ)/(1 - cos θ) = 1 + sec θ.`
If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.
If x sin3θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ , then show that x2 + y2 = 1.
Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.
Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0
If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.