English

`(Sin Theta +Cos Theta )/(Sin Theta - Cos Theta)+(Sin Theta- Cos Theta)/(Sin Theta + Cos Theta) = 2/((Sin^2 Theta - Cos ^2 Theta)) = 2/((2 Sin^2 Theta -1))` - Mathematics

Advertisements
Advertisements

Question

`(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) = 2/((sin^2 theta - cos ^2 theta)) = 2/((2 sin^2 theta -1))`

Solution

We have , `(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) `

      =`((sin theta + cos theta )^2 + (sin theta - cos theta)^2) /((sin theta - cos theta )(sin theta + cos theta))`

     =`(sin^2 theta + cos ^2 theta + 2 sin theta  cos theta + sin^2 theta + cos^2 theta -2 sin theta cos theta)/(sin^2 theta - cos ^2 theta)`

     =`(1+1)/(sin^2 theta - cos^2 theta)`

     =`2/(sin^2 theta - cos^2 theta)`

Again ,` 2/(sin^2 theta - cos^2 theta)`

    =`2/(sin^2 theta -(1-sin^2 theta))`

   =`2/(2 sin ^2 theta -1)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Trigonometric Identities - Exercises 1

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 8 Trigonometric Identities
Exercises 1 | Q 29

RELATED QUESTIONS

Express the ratios cos A, tan A and sec A in terms of sin A.


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`

[Hint: Write the expression in terms of sinθ and cosθ]


Prove the following identities:

`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`


Prove the following identities:

`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`


`(sec^2 theta-1) cot ^2 theta=1`


`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`

 


If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`


Write the value of tan10° tan 20° tan 70° tan 80° .


If x =  a sin θ and y = bcos θ , write the value of`(b^2 x^2 + a^2 y^2)`


Prove that:

`(sin^2θ)/(cosθ) + cosθ = secθ`


If cos A + cos2 A = 1, then sin2 A + sin4 A =


Prove the following identity :

`1/(tanA + cotA) = sinAcosA`


Prove the following identity : 

`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`


Prove that `(sin θ tan θ)/(1 - cos θ) = 1 + sec θ.`


If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.


If x sin3θ + y cos3 θ = sin θ cos θ  and x sin θ = y cos θ , then show that x2 + y2 = 1.


Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.


Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0


If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`


Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×