English

`(Cos Theta Cosec Theta - Sin Theta Sec Theta )/(Costheta + Sin Theta) = Cosec Theta - Sec Theta` - Mathematics

Advertisements
Advertisements

Question

`(cos theta  cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`

Solution

LHS = `(cos theta   cosec theta - sin theta  sec theta )/(costheta + sin theta)`

      =`((cos theta   sin theta)/(sin theta cos theta))/(cos theta + sin theta)`

      =`(cos^2  theta - sin^2 theta)/(cos theta  sin theta ( cos theta + sin theta))`

      =`((cos theta + sin theta )( cos theta - sin theta))/(cos theta sin theta ( cos theta + sin theta))`

      =`((cos theta - sin theta ))/(cos theta   sin theta)`

     =`1/ sin theta - 1/ cos theta`

     =`cosec theta - sec theta`

     = RHS
Hence, LHS = RHS 

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Trigonometric Identities - Exercises 1

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 8 Trigonometric Identities
Exercises 1 | Q 30

RELATED QUESTIONS

If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cosec  θ  – cot θ)^2 = (1-cos theta)/(1 + cos theta)`


Prove the following trigonometric identities.

sin2 A cot2 A + cos2 A tan2 A = 1


Prove the following trigonometric identities.

`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`


Prove the following trigonometric identities.

(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)


Prove the following trigonometric identities

sec4 A(1 − sin4 A) − 2 tan2 A = 1


Prove the following trigonometric identities.

sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B


Prove that:

`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`


Prove that:

`cosA/(1 + sinA) = secA - tanA`


If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.


Prove that:

Sin4θ - cos4θ = 1 - 2cos2θ


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then 


Prove the following identity : 

`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`


Prove the following identity : 

`(1 + tan^2θ)sinθcosθ = tanθ`


Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`


Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`


If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.


Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`


If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ


If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×