Advertisements
Advertisements
Question
`(cos theta cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`
Solution
LHS = `(cos theta cosec theta - sin theta sec theta )/(costheta + sin theta)`
=`((cos theta sin theta)/(sin theta cos theta))/(cos theta + sin theta)`
=`(cos^2 theta - sin^2 theta)/(cos theta sin theta ( cos theta + sin theta))`
=`((cos theta + sin theta )( cos theta - sin theta))/(cos theta sin theta ( cos theta + sin theta))`
=`((cos theta - sin theta ))/(cos theta sin theta)`
=`1/ sin theta - 1/ cos theta`
=`cosec theta - sec theta`
= RHS
Hence, LHS = RHS
APPEARS IN
RELATED QUESTIONS
If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
Prove the following trigonometric identities.
sin2 A cot2 A + cos2 A tan2 A = 1
Prove the following trigonometric identities.
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`
Prove the following trigonometric identities.
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
Prove the following trigonometric identities
sec4 A(1 − sin4 A) − 2 tan2 A = 1
Prove the following trigonometric identities.
sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
Prove that:
`cosA/(1 + sinA) = secA - tanA`
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
Prove that:
Sin4θ - cos4θ = 1 - 2cos2θ
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
Prove the following identity :
`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`
Prove the following identity :
`(1 + tan^2θ)sinθcosθ = tanθ`
Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`
Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`
If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1