English

Prove the Following Trigonometric Identities. Sin2 A Cot2 A + Cos2 A Tan2 A = 1 - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities.

sin2 A cot2 A + cos2 A tan2 A = 1

Solution

We have to prove `sin^2 A cot^2 A + cos^2 A tan^2 A = 1`

We know that `sin^2 A + cos^2 A = 1`

So,

`sin^2 A cot^2 A  + cos^2 A tan^2 A = sin^2 A (cos^2 A)/(sin^2 A) + cos^2  A(sin^2 A)/(cos^2 A)`

`= cos^2 A + sin^2 A`

= 1

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 22 | Page 44

RELATED QUESTIONS

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`


The angles of depression of two ships A and B as observed from the top of a light house 60 m high are 60° and 45° respectively. If the two ships are on the opposite sides of the light house, find the distance between the two ships. Give your answer correct to the nearest whole number.


Prove the following trigonometric identities

cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1


Prove the following trigonometric identities

sec4 A(1 − sin4 A) − 2 tan2 A = 1


Prove the following identities:

`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`


Prove that:

`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`


If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2


Prove the following identities:

`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`


`(cos theta  cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`


Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`. 


Write the value of `3 cot^2 theta - 3 cosec^2 theta.`


Prove that:

Sin4θ - cos4θ = 1 - 2cos2θ


If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.


Prove the following identity :

cosecθ(1 + cosθ)(cosecθ - cotθ) = 1


Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.


Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.


Prove the following identities.

`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ


tan θ cosec2 θ – tan θ is equal to


If cos (α + β) = 0, then sin (α – β) can be reduced to ______.


If 5 tan β = 4, then `(5  sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×