Advertisements
Advertisements
Question
The angles of depression of two ships A and B as observed from the top of a light house 60 m high are 60° and 45° respectively. If the two ships are on the opposite sides of the light house, find the distance between the two ships. Give your answer correct to the nearest whole number.
Solution
Let PQ be the light house.
`=>` PQ = 60
`tan 60^@ = (PQ)/(AQ)`
`=> sqrt(3) = 60/(AQ)`
`=> AQ = 60/sqrt(3)`
`=> AQ = (20 xx 3)/sqrt(3)`
`=> AQ = (20 xx sqrt(3) xx sqrt(3))/sqrt(3)`
`=> AQ = 20sqrt(3) m`
In ΔPQB
`tan 45^@ = (PQ)/(QB)`
`=> 1 = 60/(QB)`
`=>` QB = 60 m
Now,
AB = AQ + QB
= `20sqrt(3) + 60`
= 20 × 1.732 + 60
= 94.64
= 95 m
APPEARS IN
RELATED QUESTIONS
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`sqrt((1+sinA)/(1-sinA)) = secA + tanA`
Prove the following trigonometric identities.
`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`
Prove that:
`cosA/(1 + sinA) = secA - tanA`
The value of sin2 29° + sin2 61° is
Prove the following identity :
`(secA - 1)/(secA + 1) = (1 - cosA)/(1 + cosA)`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`tan35^circ cot(90^circ - θ) = 1`
If 3 sin θ = 4 cos θ, then sec θ = ?
If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.
Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`
Find the value of sin2θ + cos2θ
Solution:
In Δ ABC, ∠ABC = 90°, ∠C = θ°
AB2 + BC2 = `square` .....(Pythagoras theorem)
Divide both sides by AC2
`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`
∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`
But `"AB"/"AC" = square and "BC"/"AC" = square`
∴ `sin^2 theta + cos^2 theta = square`