Advertisements
Advertisements
Question
Prove the following identity :
`(secA - 1)/(secA + 1) = (1 - cosA)/(1 + cosA)`
Solution
LHS = `(secA - 1)/(secA + 1) = (1/cosA - 1)/(1/cosA + 1)`
= `(1 -cosA)/(1 + cosA) = "RHS"`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`
Prove the following identities:
`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`
If `sec theta = x ,"write the value of tan" theta`.
If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ.
Prove the following identity :
`(1 + tan^2θ)sinθcosθ = tanθ`
`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A
Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.
Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.
If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
sin(45° + θ) – cos(45° – θ) is equal to ______.