Advertisements
Advertisements
Question
`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A
Solution
LHS = `((sin^2 A + ( 1 + cos A)^2)/((1 + cos A)sin A))`
= `(sin^2 A + 1 + cos^2 A + 2 cos A)/((1 + cos A) sin A)`
= `(1 + 1 + 2 cos A)/((1 + cos A) sin A)`
= `(2(1 + cos A))/((1 + cos A)sin A)`
= 2 cosec A
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`
Prove the following trigonometric identities.
`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`
Prove the following trigonometric identity.
`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`
sec4 A − sec2 A is equal to
If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =
Prove the following identity :
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Prove the following identity :
`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`
Prove the following identity :
`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`
Without using trigonometric identity , show that :
`sin(50^circ + θ) - cos(40^circ - θ) = 0`
Prove that `sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A - 1) = 1`.