Advertisements
Advertisements
Question
Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.
Solution
L.H.S. = `sqrt(((1 - sin θ)(1 - sin θ))/((1 + sin θ)(1 - sin θ)))`
= `sqrt((1 + sin^2θ - 2sinθ)/(1 - sin^2θ)`
= `sqrt((1 + sin^2θ - 2sinθ)/(cos^2θ)`
= `sqrt( 1/cos^2θ + sin^2θ/cos^2θ - (2sin θ)/cos θ xx 1/cosθ`
= `sqrt( sec^2θ + tan^2 θ - 2 tan θ. sec θ)`
= `sqrt((sec θ - tan θ)^2)`
= sec θ - tan θ
= R.H.S.
Hence proved.
APPEARS IN
RELATED QUESTIONS
9 sec2 A − 9 tan2 A = ______.
The angles of depression of two ships A and B as observed from the top of a light house 60 m high are 60° and 45° respectively. If the two ships are on the opposite sides of the light house, find the distance between the two ships. Give your answer correct to the nearest whole number.
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
Prove that:
`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`
Write True' or False' and justify your answer the following :
The value of the expression \[\sin {80}^° - \cos {80}^°\]
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
Prove the following identity :
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.
If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ
To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.
Activity:
L.H.S = `square`
= `square/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/square`
= `1/(sintheta*costheta)` ......`[cos^2theta + sin^2theta = square]`
= `1/sintheta xx 1/square`
= `square`
= R.H.S