English

Prove that Sqrt((1 - Sin θ)/(1 + Sin θ)) = Sec θ - Tan θ - Mathematics

Advertisements
Advertisements

Question

Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.

Sum

Solution

L.H.S. = `sqrt(((1 - sin θ)(1 - sin θ))/((1 + sin θ)(1 - sin θ)))`

= `sqrt((1 + sin^2θ - 2sinθ)/(1 - sin^2θ)`

= `sqrt((1 + sin^2θ - 2sinθ)/(cos^2θ)`

= `sqrt( 1/cos^2θ + sin^2θ/cos^2θ - (2sin θ)/cos θ xx 1/cosθ`

= `sqrt( sec^2θ + tan^2 θ - 2 tan θ. sec θ)`

= `sqrt((sec θ - tan θ)^2)`

= sec θ - tan θ
= R.H.S.
Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Trigonometry - Exercise 2

APPEARS IN

ICSE Mathematics [English] Class 10
Chapter 18 Trigonometry
Exercise 2 | Q 6
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×