English

Write True' Or False' and Justify Your Answer the Following : the Value of the Expression Sin 80 ∘ − Cos 80 ∘ - Mathematics

Advertisements
Advertisements

Question

 Write True' or False' and justify your answer the following :

The value of the expression \[\sin {80}^° - \cos {80}^°\] 

True or False

Solution

Consider the table. 

θ 30° 45° 60° 90°
sin θ 0 `1/2` `1/sqrt2` `sqrt3/2` 1
cos θ  1 `sqrt3/2` `1/sqrt2` `1/2` 0

Here, 

`sin 60°-cos 60°=sqrt3/2-1/2>0` 

`sin 90°-cos 90°= 1-0>0 ` 

`so, sin 80°-cos 80° > 0`    ` (sin θ-cos θ≥0AA45°≤ θ ≤ 90° )`

Therefore, the given statement is false.

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.3 [Page 56]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.3 | Q 24.4 | Page 56

RELATED QUESTIONS

Prove the following trigonometric identities.

`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`


Prove the following identities:

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`


Prove that:

`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`


Prove the following identities:

`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`


If x = a cos θ and y = b cot θ, show that:

`a^2/x^2 - b^2/y^2 = 1` 


`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`


Write the value of sin A cos (90° − A) + cos A sin (90° − A).


If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\] 


If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ = 


If cos  \[9\theta\] = sin \[\theta\] and  \[9\theta\]  < 900 , then the value of tan \[6 \theta\] is


Prove the following identity : 

`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`


Find the value of `θ(0^circ < θ < 90^circ)` if : 

`cos 63^circ sec(90^circ - θ) = 1`


Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.


Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2  = 1`


Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.


If tan θ = `9/40`, complete the activity to find the value of sec θ.

Activity:

sec2θ = 1 + `square`     ......[Fundamental trigonometric identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square` 

sec θ = `square` 


Prove that sin6A + cos6A = 1 – 3sin2A . cos2A


If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.


(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×