Advertisements
Advertisements
Question
Write True' or False' and justify your answer the following :
The value of the expression \[\sin {80}^° - \cos {80}^°\]
Solution
Consider the table.
θ | 0° | 30° | 45° | 60° | 90° |
sin θ | 0 | `1/2` | `1/sqrt2` | `sqrt3/2` | 1 |
cos θ | 1 | `sqrt3/2` | `1/sqrt2` | `1/2` | 0 |
Here,
`sin 60°-cos 60°=sqrt3/2-1/2>0`
`sin 90°-cos 90°= 1-0>0 `
`so, sin 80°-cos 80° > 0` ` (sin θ-cos θ≥0AA45°≤ θ ≤ 90° )`
Therefore, the given statement is false.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
Prove that:
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Prove the following identities:
`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`
If x = a cos θ and y = b cot θ, show that:
`a^2/x^2 - b^2/y^2 = 1`
`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`
Write the value of sin A cos (90° − A) + cos A sin (90° − A).
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
If cos \[9\theta\] = sin \[\theta\] and \[9\theta\] < 900 , then the value of tan \[6 \theta\] is
Prove the following identity :
`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`cos 63^circ sec(90^circ - θ) = 1`
Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.
Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2 = 1`
Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.
If tan θ = `9/40`, complete the activity to find the value of sec θ.
Activity:
sec2θ = 1 + `square` ......[Fundamental trigonometric identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square`
sec θ = `square`
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A
If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.
(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.