Advertisements
Advertisements
Question
Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2 = 1`
Solution
LHS = `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2`
= `((sin 20°. sin 70°)/(cos 20°))^2 + ((cos 20°. cos 20°)/(sin 20°))^2`
= `[(sin 20°.sin (90° - 20°))/(cos 20°)]^2 + [(cos 20°. cos(90° - 20°))/(sin 20°)]^2`
= `[ (sin 20°.cos 20°)/(cos 20°)]^2 + [(cos 20°. sin 20°)/(sin 20°)]^2`
= sin2 20° + cos2 20°
= 1
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
If `sec alpha=2/sqrt3` , then find the value of `(1-cosecalpha)/(1+cosecalpha)` where α is in IV quadrant.
Prove the following trigonometric identities.
`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = tan theta`
If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.
If `secθ = 25/7 ` then find tanθ.
Choose the correct alternative:
1 + tan2 θ = ?
Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.
If 3 sin θ = 4 cos θ, then sec θ = ?
Prove the following trigonometry identity:
(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ