English

If 3 Sin θ + 5 Cos θ = 5, Prove that 5 Sin θ – 3 Cos θ = ± 3. - Mathematics

Advertisements
Advertisements

Question

If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.

Sum

Solution

Given 3 sin θ + 5 cos θ = 5

Squaring on both sides for both the equations 

⇒ 9 sin2θ + 25 cos2θ + 30 sinθ cosθ = 25

⇒ 25 sin2θ + 9 cos2θ − 30 sinθ cosθ = x2

Adding the equations;

⇒ 34 (sin2θ + cos2θ) = 25 + x2

⇒ x2 = 34 − 25 = 9

⇒ x = ±3

∴ 5 sinθ − 3 cosθ = ±3

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 47]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 79 | Page 47

RELATED QUESTIONS

Evaluate without using trigonometric tables:

`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`


Prove the following trigonometric identities.

`cos A/(1 - tan A) + sin A/(1 - cot A)  = sin A + cos A`


Prove the following trigonometric identities.

`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`


Prove the following trigonometric identities.

`tan A/(1 + tan^2  A)^2 + cot A/((1 + cot^2 A)) = sin A  cos A`


Prove that

`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`


Prove the following identities:

`cosA/(1 - sinA) = sec A + tan A`


If 4 cos2 A – 3 = 0, show that: cos 3 A = 4 cos3 A – 3 cos A


`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`


`sin theta/((cot theta + cosec  theta)) - sin theta /( (cot theta - cosec  theta)) =2`


Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`


Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:

sin θ × cosec θ = ______


Prove the following identity :

`(1 - cos^2θ)sec^2θ = tan^2θ`


Prove the following identity :

`cos^4A - sin^4A = 2cos^2A - 1`


Prove the following Identities :

`(cosecA)/(cotA+tanA)=cosA`


Prove the following identity : 

`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`


Prove the following identity : 

`(1 + cotA + tanA)(sinA - cosA) = secA/(cosec^2A) - (cosecA)/sec^2A`


`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A


Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.


If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ


Prove that sin6A + cos6A = 1 – 3sin2A . cos2A


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×