Advertisements
Advertisements
Question
If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.
Solution
Given 3 sin θ + 5 cos θ = 5
Squaring on both sides for both the equations
⇒ 9 sin2θ + 25 cos2θ + 30 sinθ cosθ = 25
⇒ 25 sin2θ + 9 cos2θ − 30 sinθ cosθ = x2
Adding the equations;
⇒ 34 (sin2θ + cos2θ) = 25 + x2
⇒ x2 = 34 − 25 = 9
⇒ x = ±3
∴ 5 sinθ − 3 cosθ = ±3
Hence proved.
APPEARS IN
RELATED QUESTIONS
Evaluate without using trigonometric tables:
`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`
Prove the following trigonometric identities.
`cos A/(1 - tan A) + sin A/(1 - cot A) = sin A + cos A`
Prove the following trigonometric identities.
`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`
Prove the following trigonometric identities.
`tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
Prove that
`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`
Prove the following identities:
`cosA/(1 - sinA) = sec A + tan A`
If 4 cos2 A – 3 = 0, show that: cos 3 A = 4 cos3 A – 3 cos A
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`
Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:
sin θ × cosec θ = ______
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
Prove the following identity :
`cos^4A - sin^4A = 2cos^2A - 1`
Prove the following Identities :
`(cosecA)/(cotA+tanA)=cosA`
Prove the following identity :
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove the following identity :
`(1 + cotA + tanA)(sinA - cosA) = secA/(cosec^2A) - (cosecA)/sec^2A`
`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A
Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.
If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A